The ground state energy of the Edwards–Anderson spin glass model with a parallel tempering Monte Carlo algorithm
نویسندگان
چکیده
منابع مشابه
The ground state energy of the Edwards-Anderson spin glass model with a parallel tempering Monte Carlo algorithm
We study the efficiency of parallel tempering Monte Carlo technique for calculating true ground states of the Edwards-Anderson spin glass model. Bimodal and Gaussian bond distributions were considered in two and three-dimensional lattices. By a systematic analysis we find a simple formula to estimate the values of the parameters needed in the algorithm to find the GS with a fixed average probab...
متن کاملApproaching the Ground State of a Quantum Spin Glass using a Zero-Temperature Quantum Monte Carlo
Here we discuss the annealing behavior of an infinite-range ±J Ising spin glass in presence of a transverse field using a zero-temperature quantum Monte Carlo. Within the simulation scheme, we demonstrate that quantum annealing not only helps finding the ground state of a classical spin glass, but can also help simulating the ground state of a quantum spin glass, in particularly, when the trans...
متن کاملFeedback-optimized parallel tempering Monte Carlo
We introduce an algorithm for systematically improving the efficiency of parallel tempering Monte Carlo simulations by optimizing the simulated temperature set. Our approach is closely related to a recently introduced adaptive algorithm that optimizes the simulated statistical ensemble in generalized broad-histogram Monte Carlo simulations. Conventionally, a temperature set is chosen in such a ...
متن کاملThe ground state energy of the ±J spin glass from the genetic algorithm
The ground state energy of the +J 2-dimensional square and 3-dimensional cubic spin glasses are determined by trie Genetic Algorithm. System sizes of linear dimensions 6 to 20 are considered in 2-dimensions and from 4 to 9 in 3-dimensions. We estimate that the ground state energy of trie infinite system is -1.400 + 0.005 (2d) and -1.765 + 0.01 (3d) in units of J. The Genetic Algorithm
متن کاملParallel-hat tempering: A Monte Carlo search scheme for the identification of low-energy structures
A new parallel-hat tempering algorithm has been developed for Monte Carlo simulations, in which a composite ensemble of noninteracting replicas of the molecule system at different temperatures is simulated, and the Markov process of each replica is driven by a hatlike weight factor with exponentially enhanced probability in both lowand high-energy regions. To test the algorithm, the methodology...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physica A: Statistical Mechanics and its Applications
سال: 2009
ISSN: 0378-4371
DOI: 10.1016/j.physa.2009.03.036